14 research outputs found

    Nano-scale reservoir computing

    Full text link
    This work describes preliminary steps towards nano-scale reservoir computing using quantum dots. Our research has focused on the development of an accumulator-based sensing system that reacts to changes in the environment, as well as the development of a software simulation. The investigated systems generate nonlinear responses to inputs that make them suitable for a physical implementation of a neural network. This development will enable miniaturisation of the neurons to the molecular level, leading to a range of applications including monitoring of changes in materials or structures. The system is based around the optical properties of quantum dots. The paper will report on experimental work on systems using Cadmium Selenide (CdSe) quantum dots and on the various methods to render the systems sensitive to pH, redox potential or specific ion concentration. Once the quantum dot-based systems are rendered sensitive to these triggers they can provide a distributed array that can monitor and transmit information on changes within the material.Comment: 8 pages, 9 figures, accepted for publication in Nano Communication Networks, http://www.journals.elsevier.com/nano-communication-networks/. An earlier version was presented at the 3rd IEEE International Workshop on Molecular and Nanoscale Communications (IEEE MoNaCom 2013

    Managing Extreme Heat and Smoke: A Focus Group Study of Vulnerable People in Darwin, Australia

    Get PDF
    Extreme heat and poor air quality arising from landscape fires are an increasing global concern driven by anthropogenic climate change. Previous studies have shown these environmental conditions are associated with negative health outcomes for vulnerable people. Managing and adapting to these conditions in a warming climate can present substantial difficulties, especially in climates already challenging for human habitation. This study was set in the tropical city of Darwin, Australia. We recruited individuals from population groups vulnerable to outdoor hazards: outdoor workers, teachers and carers, and sportspeople, to participate in focus group discussions. We aimed to gain an understanding of the impacts of extreme heat and poor air quality and how individuals perceived and managed these environmental conditions. We identified a number of key themes relating to impacts on health, work and activity, and adaptive behaviors, while identifying gaps in policy and infrastructure that could improve the lives and protect the health of vulnerable people living, working, and playing in this region. In addition, these outcomes potentially provide direction for other regions with similar environmental challenges. Extreme heat and poor air quality place an additional burden on the lives of people in high-risk settings, such as outdoor workers, teachers and carers, and sportspeople

    Environmental Life Cycle Costing and Sustainability: Insights from Pollution Abatement and Resource Recovery in Wastewater Treatment

    No full text
    The relationship between environmental life cycle costing (ELCC) and sustainability was explored using two detailed wastewater case studies. The case studies were selected to increase the tension between existing market values and values for sustainability; the first case study considered incremental change to an existing plant and the second considered a paradigm shift in wastewater treatment. Pollution control provided the greatest cost savings for the first case study and provided a "win-win" result-meeting existing standards and saving money. However, benefits for pollution control beyond current standards were not captured, which emphasized the role of standards to internalize as well as limit the values considered in ELCC. In the second case study, the value of water had the potential to change the focus of wastewater design from pollution abatement to resource recovery. However, social acceptance of recovered water and market access for resources created large risk for investment. The ELCC was also sensitive to the discount rate which limited longer-term considerations. Other sustainability values such as scarcity and ecological thresholds were not captured. The ELCC code of practice suggests including such costs if likely in the foreseeable future; defining these values may also clarify the role of ELCC to evaluate sustainability over the life cycle

    Designing green, self-healing coatings for metal protection

    Full text link

    Omics-based approaches and their use in the assessment of microbial-influenced corrosion of metals

    No full text
    Microbial-influenced corrosion (MIC) has been known to have economic, environmental, and social implications to offshore oil and gas pipelines, concrete structures, and piped water assets. While corrosion itself is a relatively simple process, the localised manner of corrosion makes in situ assessments difficult. Furthermore, corrosion assessments tend to be measured as part of a forensic investigation. Compounding the issue further is the impact of microbiological/biofilm processes, where corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. While traditional microbiological culture-dependent techniques and electrochemical/physical assessments provide some insight into corrosion activity, the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments are scarce. One avenue to explore MIC and MIC inhibition is through the application of omics-based techniques, where insight into the bacterial population in terms of diversification and their metabolism can be further understood. As such, this paper discusses the recent progresses made in a number of fields that have used omics-based applications to improve the fundamental understanding of biofilms and MIC processes
    corecore